Radio Freethinker

Vancouver's Number 1 Skeptical Podcast and Radio Show

Caffeine and Cancer Prevention: For Reals?

Posted by Jenna Capyk on September 1, 2011

Ask any graduate student and they might tell you caffeine is a lifeline. Ask a health enthusiast and they might tell you it’s a poison. Ask a physician and between sips they might advise you that it’s fine in moderation. If you decide to ask the researchers behind a recent paper in the Proceedings of the National Academy of Sciences, however, they’ll let you know that caffeine can help prevent skin cancer. As a bonus, they’ll even tell you why.

Before we can talk about what role enzymes play in cancer, we need a very brief description of how cancer works. Cancer occurs in pretty much all life forms that exist, like us, as groups of cells. This is in contrast to single-celled organisms like bacteria and yeasts. Cancer is basically uncontrolled growth of specific cells. All the cells in our body usually divide to form new cells, thus growing the tissue, at specific rates and under specific circumstances. Cancer is when the cells divide very rapidly without obeying the rules, so to speak, of when they are supposed to replicate. One of the reasons that normal cell division is so regulated is to make sure that the new cells coming out of cell division are healthy and have accurate copies of the parent-cell DNA. When replication is happening too quickly, there is no time for the cell “quality control” mechanisms to check that everything is honky dory, and the result can be new cells with mistakes in the genetic code. These aberrant cells not only have functional due to the mutations, but will also go on to divide rapidly, causing a cascade of rapidly dividing, unhealthy cells that form the tumors associated with cancer.  So what is the trigger for this cascade? What causes that initial cell to start dividing too fast? As I mentioned, normal cell division is closely regulated, and if something causes a problem in one of the tools the cell uses to regulate division, the regulation system can go out the window. The genes coding for these regulatory tools are often called oncogenes (basically “cancer genes”) as mutations in these genes are likely to cause cancer.

There are many things coming at us every day that can cause DNA damage and, if we’re unlucky, cause mutations in an oncogene. These range from UV-rays to charbroiled steak to chemicals we make inside our own cells or mistakes by our cellular DNA-manipulation machinery. In fact, much DNA damage is done every day inside each one of us, so why are we still up and walking around? Enter the enzyme. Not one enzyme, in fact, but an arsenal of enzymes, each with a specific job to do in DNA-maintenance. In thinking of enzymes in your body, you can think of each one having a very specific skill, like trades-people working to build a house. The plumber doesn’t put in the electrical work and only the floor guy puts in the tile. With enzymes it goes even further, so that in laying the tile you’d have one guy lay the grout, one guy pick up the tile, another to position it, another to press it down, another to wipe it clean, etc.  In talking of DNA, there is a set of enzymes for making the DNA, specific sets of enzymes to repair specific types of DNA damage, and specific sets of enzymes to detect specific types of damage at specific times and signal to the DNA repair enzymes to get to work.

Before we get too jittery, lets talk about how caffeine affects this process. We all have an enzyme called ATR that is involved in a couple things we’ve talked about. This enzyme is a kinase, meaning that it catalyzes transfer of a phosphate group from one molecule onto another enzyme. This might seem a bit inconsequential in the context of something as huge as cancer, but this one transfer reaction is a recognizable signal in the cell that is passed along and amplified, eventually triggering the action of enzymes tasked with repairing certain types of DNA damage, including that caused by UV-rays. The enzyme ATR also happens to be part of the division regulation “tools” that we talked about. It’s a kinase that performs its role as part of a cell division checkpoint, a time when activities in the cell determine if it will go on to divide, or kill itself in a process called apoptosis.

Caffeine binds to ATR and stops it from doing its job. This means that when some kinds of DNA-damage is detected, ATR does nothing (instead of transferring that all-important phosphate), the DNA is not repaired, and instead of replicating, the cell dies. Wait a second, this sounds like a bad thing; how does this prevent cancer? The problem with DNA repair enzymes is that for certain types of DNA damage, there is no way for them to ensure that the DNA is put back together exactly like it was before the damage. Sometimes these enzymes can only physically fix the break and hope that the sequence is repaired by luck, or that it was in a spot that didn’t matter much anyway. If this type of repair happens in an unlucky spot, however, like an oncogene, the repair makes the DNA look physically okay, but the resultant mutation can have cancerous consequences. In these cases, NOT repairing the DNA effectively causes cellular suicide before the very first cancer cell can form.

Enzymes have a role in everything our bodies do, from detecting signals and passing messages, to constructing and repairing cellular components. Everything is controlled in a delicate balance, and often this control is itself achieved by enzymes. As this example illustrates, turning an enzyme “off” is an important component of cellular control mechanisms. Although our bodies have many built-in off switches, outside chemicals can also interact with our enzymes with ultimate results that can be difficult to predict. So next time you’re chowing down you can look at your food and ask, “hey, what enzyme are you hooking up with?”

If you liked this post, you might want to check out others on my blog: And That’s Science!


2 Responses to “Caffeine and Cancer Prevention: For Reals?”

  1. voucher code
    Can anyone suggest some further reading? Thanks.

    • Jenna Capyk said

      If you click on the link in the first paragraph it will take you to the original research paper. Getting the gist from the source should help you to weed through what may be accurate or exaggerated in the media.

      Hope that helps

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s